Frullani's integral
Giuliano Frullani
Quick Info
Born: 1795, Italian.
Died: 1834
Introduction
The Italian mathematician G. Frullani, 1795-1834,
reported to G. A. Plana, 1781-1864, the formula
\begin{equation} \int_{0}^{\infty }\frac{f\left ( ax \right )-f\left ( bx \right )}{x}dx=f\left ( 0 \right )log\left ( \frac{a}{b} \right )\end{equation}
In 1823 and 1827, Cauchy gave a satisfactory proof of the formula
\begin{equation} \int_{0}^{\infty }\frac{f\left ( ax \right )-f\left ( bx \right )}{x}dx=\left [ f\left ( \infty \right )-f\left ( 0 \right ) \right ]log\left ( \frac{a}{b} \right ) \end{equation}
We look at a nice Integral identity that alows us to evaluate an entire family of integrals.
For example:
References
Labels: Frullani's integral
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home